NEWS
Institutional Subscription: Comprehensive Analyses to Enhance Your Global and Local Impact
New Feature: Compare Your Institution with the Previous Year
Find a Professional: Explore Experts Across 197 Disciplines in 220 Countries!
Find a Professional
Print Your Certificate
New! Young University / Institution Rankings 2025
New! Art & Humanities Rankings 2025
New! Social Sciences and Humanities Rankings 2025
Highly Cited Researchers 2025
AD
Scientific Index 2025
Scientist Rankings
University Rankings
Subject Rankings
Country Rankings
login
Login
person_add
Register
insights
H-Index Rankings
insights
i10 Productivity Rankings
format_list_numbered
Citation Rankings
subject
University Subject Rankings
school
Young Universities
format_list_numbered
Top 100 Scientists
format_quote
Top 100 Institutions
format_quote
Compare & Choose
local_fire_department
Country Reports
person
Find a Professional
Bernd Sturmfels
Max Planck Institute for Mathematics in the Sciences in Leipzig, Germany - Leipzig / Germany
Natural Sciences / Mathematical Sciences
AD Scientific Index ID: 4429812
Registration, Add Profile,
Premium Membership
Print Your Certificate
Ranking &
Analysis
Job
Experiences (0)
Education
Information (0)
Published Books (0)
Book Chapters (0)
Articles (0)
Presentations (0)
Lessons (0)
Projects (0)
Subject Leaders
Editorship, Referee &
Scientific Board (0 )
Patents /
Designs (0)
Academic Grants
& Awards (0)
Artistic
Activities (0)
Certificate / Course
/ Trainings (0)
Association &
Society Memberships (0)
Contact, Office
& Social Media
person_outline
Bernd Sturmfels's MOST POPULAR ARTICLES
1-)
Gröbner bases and convex polytopesB SturmfelsProvidence, R.I. : American Mathematical Society, 199622651996
2-)
Combinatorial commutative algebraE Miller, B SturmfelsNew York : Springer 227, XIV, 417 p., 200517762005
3-)
Introduction to tropical geometryD Maclagan, B SturmfelsProvidence, R.I. : American Mathematical Society 161, XII, 363 p., 20151226*2015
4-)
Algorithms in invariant theoryB SturmfelsWien : Springer, 19931270*1993
5-)
Solving systems of polynomial equationsB SturmfelsAmerican Mathematical Soc., 200211282002
ARTICLES
Add your articles
We use cookies to personalize our website and offer you a better experience. If you accept cookies, we can offer you special services.
Cookie Policy
Accept